
Nguyễn Hữu Dư, Nhà giáo Ưu tú, Giáo sư, Tiến sĩ
Văn phòng:
T3-308
Trang web:
https://scholar.google.com.vn/citations?user=WfYUSMkAAAAJ&hl=vi
Lĩnh vực nghiên cứu:
Lý thuyết Xác suất và Thống kê, Hệ động lực tất định và ngẫu nhiên, Phương trình Vi phân
Quá trình đào tạo:
- Đại học, 1979, Xác suất-Thống kê, Đại học Tổng Hợp Hà Nội, Hà Nội, Việt Nam
- Tiến sỹ, 1990, Điều khiển Ngẫu nhiên, Đại học Tổng Hợp Hà Nội, Hà Nội, Việt Nam
Các môn giảng dạy:
- Xác suất,-Thống kê
- Phương trình Vi phân
- Lý thuyết Hệ động lực
- Lý thuyết Độ đo
- Quá trình ngẫu nhiên
Công bố khoa học
-
Stability and robust stability of linear time-invariant delay differential-algebraic equations. SIAM J. Matrix Anal. Appl. 2013;34:1631–1654. doi:10.1137/130926110. .
-
On the permanence of predator-prey model with the {B}eddington-{D}e{A}ngelis functional response in periodic environment. Acta Math. Vietnam. 2012;37:267–280. .
-
Advanced Agent Technology: AAMAS 2011 Workshops, AMPLE, AOSE, ARMS, DOCM3AS, ITMAS, Taipei, Taiwan, May 2-6, 2011. Revised Selected Papers. Trong: Berlin, Heidelberg: Springer Berlin Heidelberg; 2012:371–383. doi:10.1007/978-3-642-27216-5_28. .
-
On index-2 linear implicit difference equations. Linear Algebra Appl. 2011;434:394–414. doi:10.1016/j.laa.2010.09.025. .
-
Dynamics of {K}olmogorov systems of competitive type under the telegraph noise. J. Differential Equations. 2011;250:386–409. doi:10.1016/j.jde.2010.08.023. .
-
On the dynamics of predator-prey systems with {B}eddington-{D}eangelis functional response. Asian-Eur. J. Math. 2011;4:35–48. doi:10.1142/S1793557111000058. .
-
Lyapunov stability of quasilinear implicit dynamic equations on time scales. J. Inequal. Appl. 2011:Art. ID 979705, 27. doi:10.1155/2011/979705. .
-
Asymptotic behaviour of solutions to stochastic phase transition model. Sci. Math. Jpn. 2011;73:143–156. .
-
Asymptotic behavior of predator-prey systems perturbed by white noise. Acta Appl. Math. 2011;115:351–370. doi:10.1007/s10440-011-9628-4. .
-
Stability radius of implicit dynamic equations with constant coefficients on time scales. Systems Control Lett. 2011;60:596–603. doi:10.1016/j.sysconle.2011.04.018. .